17 research outputs found

    Iterative Data Refinement for Self-Supervised MR Image Reconstruction

    Full text link
    Magnetic Resonance Imaging (MRI) has become an important technique in the clinic for the visualization, detection, and diagnosis of various diseases. However, one bottleneck limitation of MRI is the relatively slow data acquisition process. Fast MRI based on k-space undersampling and high-quality image reconstruction has been widely utilized, and many deep learning-based methods have been developed in recent years. Although promising results have been achieved, most existing methods require fully-sampled reference data for training the deep learning models. Unfortunately, fully-sampled MRI data are difficult if not impossible to obtain in real-world applications. To address this issue, we propose a data refinement framework for self-supervised MR image reconstruction. Specifically, we first analyze the reason of the performance gap between self-supervised and supervised methods and identify that the bias in the training datasets between the two is one major factor. Then, we design an effective self-supervised training data refinement method to reduce this data bias. With the data refinement, an enhanced self-supervised MR image reconstruction framework is developed to prompt accurate MR imaging. We evaluate our method on an in-vivo MRI dataset. Experimental results show that without utilizing any fully sampled MRI data, our self-supervised framework possesses strong capabilities in capturing image details and structures at high acceleration factors.Comment: 5 pages, 2 figures, 1 tabl

    Knowledge Prompt-tuning for Sequential Recommendation

    Full text link
    Pre-trained language models (PLMs) have demonstrated strong performance in sequential recommendation (SR), which are utilized to extract general knowledge. However, existing methods still lack domain knowledge and struggle to capture users' fine-grained preferences. Meanwhile, many traditional SR methods improve this issue by integrating side information while suffering from information loss. To summarize, we believe that a good recommendation system should utilize both general and domain knowledge simultaneously. Therefore, we introduce an external knowledge base and propose Knowledge Prompt-tuning for Sequential Recommendation (\textbf{KP4SR}). Specifically, we construct a set of relationship templates and transform a structured knowledge graph (KG) into knowledge prompts to solve the problem of the semantic gap. However, knowledge prompts disrupt the original data structure and introduce a significant amount of noise. We further construct a knowledge tree and propose a knowledge tree mask, which restores the data structure in a mask matrix form, thus mitigating the noise problem. We evaluate KP4SR on three real-world datasets, and experimental results show that our approach outperforms state-of-the-art methods on multiple evaluation metrics. Specifically, compared with PLM-based methods, our method improves NDCG@5 and HR@5 by \textcolor{red}{40.65\%} and \textcolor{red}{36.42\%} on the books dataset, \textcolor{red}{11.17\%} and \textcolor{red}{11.47\%} on the music dataset, and \textcolor{red}{22.17\%} and \textcolor{red}{19.14\%} on the movies dataset, respectively. Our code is publicly available at the link: \href{https://github.com/zhaijianyang/KP4SR}{\textcolor{blue}{https://github.com/zhaijianyang/KP4SR}.

    Learning Sparse Neural Networks with Identity Layers

    Full text link
    The sparsity of Deep Neural Networks is well investigated to maximize the performance and reduce the size of overparameterized networks as possible. Existing methods focus on pruning parameters in the training process by using thresholds and metrics. Meanwhile, feature similarity between different layers has not been discussed sufficiently before, which could be rigorously proved to be highly correlated to the network sparsity in this paper. Inspired by interlayer feature similarity in overparameterized models, we investigate the intrinsic link between network sparsity and interlayer feature similarity. Specifically, we prove that reducing interlayer feature similarity based on Centered Kernel Alignment (CKA) improves the sparsity of the network by using information bottleneck theory. Applying such theory, we propose a plug-and-play CKA-based Sparsity Regularization for sparse network training, dubbed CKA-SR, which utilizes CKA to reduce feature similarity between layers and increase network sparsity. In other words, layers of our sparse network tend to have their own identity compared to each other. Experimentally, we plug the proposed CKA-SR into the training process of sparse network training methods and find that CKA-SR consistently improves the performance of several State-Of-The-Art sparse training methods, especially at extremely high sparsity. Code is included in the supplementary materials

    Out-of-Distributed Semantic Pruning for Robust Semi-Supervised Learning

    Full text link
    Recent advances in robust semi-supervised learning (SSL) typically filter out-of-distribution (OOD) information at the sample level. We argue that an overlooked problem of robust SSL is its corrupted information on semantic level, practically limiting the development of the field. In this paper, we take an initial step to explore and propose a unified framework termed OOD Semantic Pruning (OSP), which aims at pruning OOD semantics out from in-distribution (ID) features. Specifically, (i) we propose an aliasing OOD matching module to pair each ID sample with an OOD sample with semantic overlap. (ii) We design a soft orthogonality regularization, which first transforms each ID feature by suppressing its semantic component that is collinear with paired OOD sample. It then forces the predictions before and after soft orthogonality decomposition to be consistent. Being practically simple, our method shows a strong performance in OOD detection and ID classification on challenging benchmarks. In particular, OSP surpasses the previous state-of-the-art by 13.7% on accuracy for ID classification and 5.9% on AUROC for OOD detection on TinyImageNet dataset. The source codes are publicly available at https://github.com/rain305f/OSP.Comment: Accpected by CVPR 202

    DLIP: Distilling Language-Image Pre-training

    Full text link
    Vision-Language Pre-training (VLP) shows remarkable progress with the assistance of extremely heavy parameters, which challenges deployment in real applications. Knowledge distillation is well recognized as the essential procedure in model compression. However, existing knowledge distillation techniques lack an in-depth investigation and analysis of VLP, and practical guidelines for VLP-oriented distillation are still not yet explored. In this paper, we present DLIP, a simple yet efficient Distilling Language-Image Pre-training framework, through which we investigate how to distill a light VLP model. Specifically, we dissect the model distillation from multiple dimensions, such as the architecture characteristics of different modules and the information transfer of different modalities. We conduct comprehensive experiments and provide insights on distilling a light but performant VLP model. Experimental results reveal that DLIP can achieve a state-of-the-art accuracy/efficiency trade-off across diverse cross-modal tasks, e.g., image-text retrieval, image captioning and visual question answering. For example, DLIP compresses BLIP by 1.9x, from 213M to 108M parameters, while achieving comparable or better performance. Furthermore, DLIP succeeds in retaining more than 95% of the performance with 22.4% parameters and 24.8% FLOPs compared to the teacher model and accelerates inference speed by 2.7x

    Data-Efficient Image Quality Assessment with Attention-Panel Decoder

    Full text link
    Blind Image Quality Assessment (BIQA) is a fundamental task in computer vision, which however remains unresolved due to the complex distortion conditions and diversified image contents. To confront this challenge, we in this paper propose a novel BIQA pipeline based on the Transformer architecture, which achieves an efficient quality-aware feature representation with much fewer data. More specifically, we consider the traditional fine-tuning in BIQA as an interpretation of the pre-trained model. In this way, we further introduce a Transformer decoder to refine the perceptual information of the CLS token from different perspectives. This enables our model to establish the quality-aware feature manifold efficiently while attaining a strong generalization capability. Meanwhile, inspired by the subjective evaluation behaviors of human, we introduce a novel attention panel mechanism, which improves the model performance and reduces the prediction uncertainty simultaneously. The proposed BIQA method maintains a lightweight design with only one layer of the decoder, yet extensive experiments on eight standard BIQA datasets (both synthetic and authentic) demonstrate its superior performance to the state-of-the-art BIQA methods, i.e., achieving the SRCC values of 0.875 (vs. 0.859 in LIVEC) and 0.980 (vs. 0.969 in LIVE).Comment: Accepted by AAAI 202

    Binarized Neural Architecture Search

    Full text link
    Neural architecture search (NAS) can have a significant impact in computer vision by automatically designing optimal neural network architectures for various tasks. A variant, binarized neural architecture search (BNAS), with a search space of binarized convolutions, can produce extremely compressed models. Unfortunately, this area remains largely unexplored. BNAS is more challenging than NAS due to the learning inefficiency caused by optimization requirements and the huge architecture space. To address these issues, we introduce channel sampling and operation space reduction into a differentiable NAS to significantly reduce the cost of searching. This is accomplished through a performance-based strategy used to abandon less potential operations. Two optimization methods for binarized neural networks are used to validate the effectiveness of our BNAS. Extensive experiments demonstrate that the proposed BNAS achieves a performance comparable to NAS on both CIFAR and ImageNet databases. An accuracy of 96.53%96.53\% vs. 97.22%97.22\% is achieved on the CIFAR-10 dataset, but with a significantly compressed model, and a 40%40\% faster search than the state-of-the-art PC-DARTS

    Dynamic Distribution Pruning for Efficient Network Architecture Search

    Full text link
    Network architectures obtained by Neural Architecture Search (NAS) have shown state-of-the-art performance in various computer vision tasks. Despite the exciting progress, the computational complexity of the forward-backward propagation and the search process makes it difficult to apply NAS in practice. In particular, most previous methods require thousands of GPU days for the search process to converge. In this paper, we propose a dynamic distribution pruning method towards extremely efficient NAS, which samples architectures from a joint categorical distribution. The search space is dynamically pruned every a few epochs to update this distribution, and the optimal neural architecture is obtained when there is only one structure remained. We conduct experiments on two widely-used datasets in NAS. On CIFAR-10, the optimal structure obtained by our method achieves the state-of-the-art 1.91.9\% test error, while the search process is more than 1,0001,000 times faster (only 1.51.5 GPU hours on a Tesla V100) than the state-of-the-art NAS algorithms. On ImageNet, our model achieves 75.2\% top-1 accuracy under the MobileNet settings, with a time cost of only 22 GPU days that is 100%100\% acceleration over the fastest NAS algorithm. The code is available at \url{ https://github.com/tanglang96/DDPNAS

    AutoDiffusion: Training-Free Optimization of Time Steps and Architectures for Automated Diffusion Model Acceleration

    Full text link
    Diffusion models are emerging expressive generative models, in which a large number of time steps (inference steps) are required for a single image generation. To accelerate such tedious process, reducing steps uniformly is considered as an undisputed principle of diffusion models. We consider that such a uniform assumption is not the optimal solution in practice; i.e., we can find different optimal time steps for different models. Therefore, we propose to search the optimal time steps sequence and compressed model architecture in a unified framework to achieve effective image generation for diffusion models without any further training. Specifically, we first design a unified search space that consists of all possible time steps and various architectures. Then, a two stage evolutionary algorithm is introduced to find the optimal solution in the designed search space. To further accelerate the search process, we employ FID score between generated and real samples to estimate the performance of the sampled examples. As a result, the proposed method is (i).training-free, obtaining the optimal time steps and model architecture without any training process; (ii). orthogonal to most advanced diffusion samplers and can be integrated to gain better sample quality. (iii). generalized, where the searched time steps and architectures can be directly applied on different diffusion models with the same guidance scale. Experimental results show that our method achieves excellent performance by using only a few time steps, e.g. 17.86 FID score on ImageNet 64 ×\times 64 with only four steps, compared to 138.66 with DDIM. The code is available at https://github.com/lilijiangg/AutoDiffusion
    corecore